Organisme de Formation aux technologies et métiers de L'informatique

Formation Big Data, synthèse technique

Informations générales

BAG
2 jours (14h)
1 950 €HT
repas inclus

Objectifs

Après ce cours, vous serez capable de :

  • Découvrir les concepts clés du Big Data
  • Identifier l'écosystème technologique d'un projet Big Data
  • Evaluer les techniques de gestion des flux de données massives
  • Implémenter des modèles d'analyses statistiques pour répondre aux besoins métiers
  • Découvrir les outils de Data Visualisation

Public

Ce cours s'adresse avant tout aux personnes suivantes :

  • Dataminers, chargés d'études statistiques, développeurs, chefs de projet, consultants en informatique décisionnelle.

Prérequis

Pour suivre ce cours, vous devez déjà posséder les connaissances suivantes :

  • Connaissances de base des modèles relationnels, des statistiques et des langages de programmation.
  • Connaissances de base des concepts de la Business Intelligence.

Programme de la formation

Comprendre les concepts clés et les enjeux du Big Data

  • Les origines du Big Data.
  • La valeur de la donnée : un changement d'importance.
  • La donnée en tant que matière première.
  • Les chiffres clés du marché dans le monde et en France.
  • Les enjeux du Big Data : ROI, organisation, confidentialité des données.
  • Démonstration : Présentation d'une architecture Big Data.

Technologies du Big Data

  • Architecture et composants de la plateforme Hadoop 2.
  • Les modes de stockage (NoSQL, HDFS).
  • Fonctionnement de MapReduce et Yarn...
  • Principales distributions Hadoop : Hortonworks, Cloudera, MapR...
  • Les technologies émergentes : Spark, Storm, Machine Learning Azure...
  • Démarche d'installation d'une plateforme Hadoop.
  • Présentation des technologies spécifiques pour le Big Data (Talend, Tableau, Qlikview...).
  • Démonstration Installation d'une plateforme Big Data complète.

Traitement des données Big Data

  • Fonctionnement de Hadoop Distributed File System (HDFS).
  • Importer des données vers HDFS.
  • Traitement des données avec PIG.
  • Requêtes SQL avec HIVE.
  • Création de flux de données massives avec un ETL.
  • Démonstration Implémentation de flux de données massives.

Méthodes d'analyse et traitements des données pour le Big Data

  • Les méthodes d'exploration.
  • Segmentation et classification.
  • Machine Learning, estimation et prédiction.
  • Le temps réel, l'IA.
  • L'implémentation des modèles.
  • Démonstration Présentation de l'environnement Spark, Jupyter Notebook, R Notebook et Shiny.
  • Mise en place d'analyses de Machine Learning avec le langage R, Python et Scala.

Data Visualisation, représenter des données de façon visuelle

  • Principales solutions du marché.
  • Aller au-delà des rapports statiques.
  • La Data Visualisation et l'art de raconter des chiffres de manière créative et ludique.
  • Mesurer l'e-réputation, la notoriété d'une marque, l'expérience et la satisfaction clients...
  • Démonstration Présentation et utilisation d'un outil de Data Visualisation pour constituer des analyses dynamiques.

Conclusion

  • Les conditions du succès.
  • Synthèse des meilleures pratiques.
  • Bibliographie.
plus d'infos

Méthode pédagogique

Chaque participant travaille sur un poste informatique qui lui est dédié. Un support de cours lui est remis soit en début soit en fin de cours. La théorie est complétée par des cas pratiques ou exercices corrigés et discutés avec le formateur. Le formateur projette une présentation pour animer la formation et reste disponible pour répondre à toutes les questions.

Méthode d'évaluation

Tout au long de la formation, les exercices et mises en situation permettent de valider et contrôler les acquis du stagiaire. En fin de formation, le stagiaire complète un QCM d'auto-évaluation.

Suivre cette formation à distance

  • Un ordinateur avec webcam, micro, haut-parleur et un navigateur (de préférence Chrome ou Firefox). Un casque n'est pas nécessaire suivant l'environnement.
  • Une connexion Internet de type ADSL ou supérieure. Attention, une connexion Internet ne permettant pas, par exemple, de recevoir la télévision par Internet, ne sera pas suffisante, cela engendrera des déconnexions intempestives du stagiaire et dérangera toute la classe.
  • Privilégier une connexion filaire plutôt que le Wifi.
  • Avoir accès au poste depuis lequel vous suivrez le cours à distance au moins 2 jours avant la formation pour effectuer les tests de connexion préalables.
  • Votre numéro de téléphone portable (pour l'envoi du mot de passe d'accès aux supports de cours et pour une messagerie instantanée autre que celle intégrée à la classe virtuelle).
  • Selon la formation, une configuration spécifique de votre machine peut être attendue, merci de nous contacter.
  • Pour les formations incluant le passage d'une certification la dernière journée, un voucher vous est fourni pour passer l'examen en ligne.
  • Pour les formations logiciel (Adobe, Microsoft Office...), il est nécessaire d'avoir le logiciel installé sur votre machine, nous ne fournissons pas de licence ou de version test.
  • Horaires identiques au présentiel.

Mis à jour le 08/11/2023