Organisme de Formation aux technologies et métiers de L'informatique

Formation Machine learning, méthodes et solutions

Informations générales

MLB
4 jours (28h)
2 860 €HT
repas inclus

Objectifs

Après ce cours, vous serez capable de :

  • Identifier les différents modèles d'apprentissage
  • Modéliser un problème pratique sous forme abstraite
  • Identifier les méthodes d'apprentissage pertinentes pour résoudre un problème
  • Appliquer et évaluer les méthodes identifiées sur un problème
  • Faire le lien entre les différentes techniques d'apprentissage

Public

Ce cours s'adresse avant tout aux personnes suivantes :

  • Ingénieurs/chefs de projet souhaitant considérer les techniques d'apprentissage automatique dans la résolution de problèmes industriels.

Prérequis

Pour suivre ce cours, vous devez déjà posséder les connaissances suivantes :

  • Connaissances de base en Python et en statistiques de base
  • ou connaissances équivalentes à celles apportées par le stage "Statistiques, maîtriser les fondamentaux"

Programme de la formation

Introduction au Machine Learning

  • Le Big Data et le Machine Learning.
  • Les algorithmes d'apprentissage supervisés, non supervisés et par renforcement.
  • Les étapes de construction d'un modèle prédictif.
  • Détecter les valeurs aberrantes et traiter les données manquantes.
  • Comment choisir l'algorithme et les variables de l'algorithme ?
  • Démonstration Prise en main de l'environnement Spark avec Python à l'aide de Jupyter Notebook. Visualiser plusieurs exemples de modèles fournis.

Procédures d'évaluation de modèles

  • Les techniques de ré-échantillonnage en jeu d'apprentissage, de validation et de test.
  • Test de représentativité des données d'apprentissage.
  • Mesures de performance des modèles prédictifs.
  • Matrice de confusion, de coût et la courbe ROC et AUC.
  • Travaux pratiques Evaluation et comparaison des différents algorithmes sur les modèles fournis.

Les modèles prédictifs, l'approche fréquentiste

  • Apprentissage statistique.
  • Conditionnement des données et réduction de dimension.
  • Machines à vecteurs supports et méthodes à noyaux.
  • Quantification vectorielle.
  • Réseaux de neurones et Deep Learning.
  • Ensemble learning et arbres de décision.
  • Les algorithmes de Bandits, optimisme face à l'incertitude.
  • Travaux pratiques Mise en oeuvre des familles d'algorithmes en utilisant des jeux de données variés.

Les modèles et apprentissages bayésiens

  • Principes d'inférence et d'apprentissage bayésiens.
  • Modèles graphiques : réseaux bayésiens, champs de Markov, inférence et apprentissage.
  • Méthodes bayésiennes : Naive Bayes, mélanges de gaussiennes, processus gaussiens.
  • Modèles markoviens : processus markoviens, chaînes de Markov, chaînes de Markov cachées, filtrage bayésien.
  • Travaux pratiques Mise en oeuvre des familles d'algorithmes en utilisant des jeux de données variés.

Machine Learning en production

  • Les spécificités liées au développement d'un modèle en environnement distribué.
  • Le déploiement Big Data avec Spark et la MLlib.
  • Le Cloud : Amazon, Microsoft Azure ML, IBM Bluemix...
  • La maintenance du modèle.
  • Travaux pratiques Mise en production d'un modèle prédictif avec l'intégration dans des processus de batch et dans des flux de traitements.
plus d'infos

Méthode pédagogique

Chaque participant travaille sur un poste informatique qui lui est dédié. Un support de cours lui est remis soit en début soit en fin de cours. La théorie est complétée par des cas pratiques ou exercices corrigés et discutés avec le formateur. Le formateur projette une présentation pour animer la formation et reste disponible pour répondre à toutes les questions.

Méthode d'évaluation

Tout au long de la formation, les exercices et mises en situation permettent de valider et contrôler les acquis du stagiaire. En fin de formation, le stagiaire complète un QCM d'auto-évaluation.

Suivre cette formation à distance

  • Un ordinateur avec webcam, micro, haut-parleur et un navigateur (de préférence Chrome ou Firefox). Un casque n'est pas nécessaire suivant l'environnement.
  • Une connexion Internet de type ADSL ou supérieure. Attention, une connexion Internet ne permettant pas, par exemple, de recevoir la télévision par Internet, ne sera pas suffisante, cela engendrera des déconnexions intempestives du stagiaire et dérangera toute la classe.
  • Privilégier une connexion filaire plutôt que le Wifi.
  • Avoir accès au poste depuis lequel vous suivrez le cours à distance au moins 2 jours avant la formation pour effectuer les tests de connexion préalables.
  • Votre numéro de téléphone portable (pour l'envoi du mot de passe d'accès aux supports de cours et pour une messagerie instantanée autre que celle intégrée à la classe virtuelle).
  • Selon la formation, une configuration spécifique de votre machine peut être attendue, merci de nous contacter.
  • Pour les formations incluant le passage d'une certification la dernière journée, un voucher vous est fourni pour passer l'examen en ligne.
  • Pour les formations logiciel (Adobe, Microsoft Office...), il est nécessaire d'avoir le logiciel installé sur votre machine, nous ne fournissons pas de licence ou de version test.
  • Horaires identiques au présentiel.

Mis à jour le 08/11/2023